246 research outputs found

    Enhancing P2P File-Sharing with an Internet-Scale Query Processor

    Get PDF

    Significant abundance of cis configurations of coding variants in diploid human genomes

    Get PDF
    To fully understand human genetic variation and its functional consequences, the specific distribution of variants between the two chromosomal homologues of genes must be known. The 'phase' of variants can significantly impact gene function and phenotype. To assess patterns of phase at large scale, we have analyzed 18 121 autosomal genes in 1092 statistically phased genomes from the 1000 Genomes Project and 184 experimentally phased genomes from the Personal Genome Project. Here we show that genes with cis-configurations of coding variants are more frequent than genes with trans-configurations in a genome, with global cis/trans ratios of ∼60:40. Significant cis-abundance was observed in virtually all genomes in all populations. Moreover, we identified a large group of genes exhibiting cis-configurations of protein-changing variants in excess, so-called 'cis-abundant genes', and a smaller group of 'trans-abundant genes'. These two gene categories were functionally distinguishable, and exhibited strikingly different distributional patterns of protein-changing variants. Underlying these phenomena was a shared set of phase-sensitive genes of importance for adaptation and evolution. This work establishes common patterns of phase as key characteristics of diploid human exomes and provides evidence for their functional significance, highlighting the importance of phase for the interpretation of protein-coding genetic variation and gene function

    Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping techniques

    Get PDF
    Determining the underlying haplotypes of individual human genomes is an essential, but currently difficult, step toward a complete understanding of genome function. Fosmid pool-based next-generation sequencing allows genome-wide generation of 40-kb haploid DNA segments, which can be phased into contiguous molecular haplotypes computationally by Single Individual Haplotyping (SIH). Many SIH algorithms have been proposed, but the accuracy of such methods has been difficult to assess due to the lack of real benchmark data. To address this problem, we generated whole genome fosmid sequence data from a HapMap trio child, NA12878, for which reliable haplotypes have already been produced. We assembled haplotypes using eight algorithms for SIH and carried out direct comparisons of their accuracy, completeness and efficiency. Our comparisons indicate that fosmid-based haplotyping can deliver highly accurate results even at low coverage and that our SIH algorithm, ReFHap, is able to efficiently produce high-quality haplotypes. We expanded the haplotypes for NA12878 by combining the current haplotypes with our fosmid-based haplotypes, producing near-to-complete new gold-standard haplotypes containing almost 98% of heterozygous SNPs. This improvement includes notable fractions of disease-related and GWA SNPs. Integrated with other molecular biological data sets, this phase information will advance the emerging field of diploid genomics

    Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes

    Get PDF
    To fully understand human biology and link genotype to phenotype, the phase of DNA variants must be known. Here we present a comprehensive analysis of haplotype-resolved genomes to assess the nature and variation of haplotypes and their pairs, diplotypes, in European population samples. We use a set of 14 haplotype-resolved genomes generated by fosmid clone-based sequencing, complemented and expanded by up to 372 statistically resolved genomes from the 1000 Genomes Project. We find immense diversity of both haploid and diploid gene forms, up to 4.1 and 3.9 million corresponding to 249 and 235 per gene on average. Less than 15% of autosomal genes have a predominant form. We describe a ‘common diplotypic proteome’, a set of 4,269 genes encoding two different proteins in over 30% of genomes. We show moreover an abundance of cis configurations of mutations in the 386 genomes with an average cis/trans ratio of 60:40, and distinguishable classes of cis- versus trans-abundant genes. This work identifies key features characterizing the diplotypic nature of human genomes and provides a conceptual and analytical framework, rich resources and novel hypotheses on the functional importance of diploidy

    Querying at Internet Scale

    Get PDF
    We are developing a distributed query processor called PIER, which is designed to run on the scale of the entire Internet. PIER utilizes a Distributed Hash Table (DHT) as its communication substrate in order to achieve scalability, reliability, decentralized control, and load balancing. PIER enhances DHTs with declarative and algebraic query interfaces, and underneath those interfaces implements multihop, in-network versions of joins, aggregation, recursion, and query/result dissemination. PIER is currently being used for diverse applications, including network monitoring, keyword-based filesharing search, and network topology mapping. We will demonstrate PIER\u27s functionality by showing system monitoring queries running on PlanetLab, a testbed of over 300 machines distributed across the globe

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Renormalisation and fixed points in Hilbert Space

    Full text link
    The energies of low-lying bound states of a microscopic quantum many-body system of particles can be worked out in a reduced Hilbert space. We present here and test a specific non-perturbative truncation procedure. We also show that real exceptional points which may be present in the spectrum can be identified as fixed points of coupling constants in the truncation procedure.Comment: 4 pages, 1 tabl

    Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    Get PDF
    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.Presidential Early Career Award for Scientists and Engineers (N000141010562)United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF0910541)United States. Office of Naval Research (grant N000141010841)Massachusetts Institute of Technology. Dept. of MathematicsStudienstiftung des deutschen VolkesClark BarwickJacob Luri

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior
    corecore